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In 1940 the Dow Chemical Company purchased 800

acres ofTexas land on the Gulf Coast to build a magnesium

production facility. That original site has expanded to

cover more than 5000 acres and holds one of the largest

petrochemicalcomplexesintheworld.Amongtheproducts

from Dow Texas Operations are magnesium, styrene, plas-

tics, adhesives, solvent, glycol, and chlorine. Some prod-

ucts are made solely for use in other processes, but many

end up as essential ingredients in products such as pharma-

ceuticals, toothpastes, dog food, water hoses, ice chests,

milk cartons, garbage bags, shampoos, and furniture.

Dow’s Texas Operations produce more than 30% of

the world’s magnesium, an extremely lightweight metal

used in products ranging from tennis racquets to suit-

cases to “mag” wheels. The Magnesium Department was

the first group in Texas Operations to train its technical

people and managers in the use of statistical quality

control. Some of the earliest successful applications of

statistical quality control were in chemical processing.

In one application involving the operation of a drier,

samples of the output were taken at periodic intervals; the

averagevalue foreachsamplewascomputedandrecorded

on a chart called an chart. Such a chart enabled Dow an-

alysts to monitor trends in the output that might indicate

the process was not operating correctly. In one instance,

analysts began to observe values for the sample mean that

were not indicative of a process operating within its design

x̄

limits. On further examination of the control chart and the

operation itself, the analysts found that the variation could

be traced to problems involving one operator. The chart

recorded after retraining the operator showed a significant

improvement in the process quality.

Dow achieves quality improvements everywhere it

applies statistical quality control. Documented savings

of several hundred thousand dollars per year are realized,

and new applications are continually being discovered.

In this chapter we will show how an chart such as

the one used by Dow can be developed. Such charts are

a part of statistical quality control known as statistical

process control. We will also discuss methods of quality

control for situations in which a decision to accept or

reject a group of items is based on a sample.

x̄

x̄

Statistical quality control has enabled Dow

Chemical Company to improve its processing

methods and output. © PR Newswire Dow 

Chemical USA/AP Images.

DOW CHEMICAL COMPANY*
FREEPORT, TEXAS

STATISTICS in PRACTICE

*The authors are indebted to Clifford B. Wilson, Magnesium Technical
Manager, The Dow Chemical Company, for providing this Statistics in
Practice.

The American Society for Quality (ASQ) defines quality as “the totality of features and

characteristics of a product or service that bears on its ability to satisfy given needs.” In other 

words, quality measures how well a product or service meets customer needs. Organiza-

tions recognize that to be competitive in today’s global economy, they must strive for a high

level of quality. As a result, they place increased emphasis on methods for monitoring and

maintaining quality.

Today, the customer-driven focus that is fundamental to high-performing organizations

has changed the scope that quality issues encompass, from simply eliminating defects on a

production line to developing broad-based corporate quality strategies. Broadening the

scope of quality naturally leads to the concept of total quality (TQ).

Total Quality (TQ) is a people-focused management system that aims at continual increase

in customer satisfaction at continually lower real cost. TQ is a total system approach (not a

ASQ’s Vision: “By making

quality a global priority, an

organizational imperative,

and a personal ethic, the

American Society for

Quality becomes the

community for everyone

who seeks quality concepts,

technology, and tools 

to improve themselves 

and their world” 

(ASQ website).
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After World War II, Dr. W.

Edwards Deming became

a consultant to Japanese

industry; he is credited with

being the person who

convinced top managers in

Japan to use the methods of

statistical quality control.

1J. R. Evans and W. M. Lindsay, The Management and Control of Quality, 6th ed. (Cincinnati, OH: South-Western, 2005),
pp. 18–19.

separate area or work program) and an integral part of high-level strategy; it works horizon-

tally across function and departments, involves all employees, top to bottom, and extends

backward and forward to include the supply chain and the customer chain. TQ stresses learn-

ing and adaptation to continual change as keys to organization success.1

Regardless of how it is implemented in different organizations, total quality is based on

three fundamental principles: a focus on customers and stakeholders; participation and

teamwork throughout the organization; and a focus on continuous improvement and learn-

ing. In the first section of the chapter we provide a brief introduction to three quality

management frameworks: the Malcolm Baldrige Quality Award, ISO 9000 standards, and

the Six Sigma philosophy. In the last two sections we introduce two statistical tools that can

be used to monitor quality: statistical process control and acceptance sampling.

20.1 Philosophies and Frameworks

In the early twentieth century, quality control practices were limited to inspecting finished

products and removing defective items. But this all changed as the result of the pioneering

efforts of a young engineer named Walter A. Shewhart. After completing his doctorate in

physics from the University of California in 1917, Dr. Shewhart joined the Western Electric

Company, working in the inspection engineering department. In 1924 Dr. Shewhart prepared

a memorandum that included a set of principles that are the basis for what is known today as

process control. And his memo also contained a diagram that would be recognized as a sta-

tistical control chart. Continuing his work in quality at Bell Telephone Laboratories until his

retirement in 1956, he brought together the disciplines of statistics, engineering, and eco-

nomics and in doing so changed the course of industrial history. Dr. Shewhart is recognized

as the father of statistical quality control and was the first honorary member of the ASQ. 

Two other individuals who have had great influence on quality are Dr. W. Edwards

Deming, a student of Dr. Shewhart, and Joseph Juran. These men helped educate the Japa-

nese in quality management shortly after World War II. Although quality is everybody’s job,

Deming stressed that the focus on quality must be led by managers. He developed a list of

14 points that he believed represent the key responsibilities of managers. For instance, Dem-

ing stated that managers must cease dependence on mass inspection; must end the practice

of awarding business solely on the basis of price; must seek continual improvement in all

production processes and service; must foster a team-oriented environment; and must elim-

inate goals, slogans, and work standards that prescribe numerical quotas. Perhaps most im-

portant, managers must create a work environment in which a commitment to quality and

productivity is maintained at all times.

Juran proposed a simple definition of quality: fitness for use. Juran’s approach to qual-

ity focused on three quality processes: quality planning, quality control, and quality im-

provement. In contrast to Deming’s philosophy, which required a major cultural change in

the organization, Juran’s programs were designed to improve quality by working within the

current organizational system. Nonetheless, the two philosophies are similar in that they

both focus on the need for top management to be involved and stress the need for continu-

ous improvement, the importance of training, and the use of quality control techniques.

Many other individuals played significant roles in the quality movement, including

Philip B. Crosby, A. V. Feigenbaum, Karou Ishikawa, and Genichi Taguchi. More special-

ized texts dealing exclusively with quality provide details of the contributions of each of

these individuals. The contributions of all individuals involved in the quality movement

helped define a set of best practices and led to numerous awards and certification programs.



The two most significant programs are the U.S. Malcolm Baldrige National Quality Award

and the international ISO 9000 certification process. In recent years, use of Six Sigma—a

methodology for improving organizational performance based on rigorous data collection

and statistical analysis—has also increased.

Malcolm Baldrige National Quality Award

The Malcolm Baldrige National Quality Award is given by the president of the United States

to organizations that apply and are judged to be outstanding in seven areas: leadership;

strategic planning; customer and market focus; measurement, analysis, and knowledge 

management; human resource focus; process management; and business results. Congress

established the award program in 1987 to recognize U.S. organizations for their achieve-

ments in quality and performance and to raise awareness about the importance of quality as

a competitive edge. The award is named for Malcolm Baldrige, who served as secretary of

commerce from 1981 until his death in 1987.

Since the presentation of the first awards in 1988, the Baldrige National Quality Pro-

gram (BNQP) has grown in stature and impact. Approximately 2 million copies of the 

criteria have been distributed since 1988, and wide-scale reproduction by organizations and

electronic access add to that number significantly. For the eighth year in a row, a hypothet-

ical stock index, made up of publicly traded U.S. companies that have received the Baldrige

Award, outperformed the Standard & Poor’s 500. In 2003, the “Baldrige Index” outper-

formed the S&P 500 by 4.4 to 1. At the 2003 Baldrige Award Ceremony, Bob Barnett, ex-

ecutive vice president of Motorola, Inc., said, “We applied for the Award, not with the idea

of winning, but with the goal of receiving the evaluation of the Baldrige Examiners. That

evaluation was comprehensive, professional, and insightful . . . making it perhaps the most

cost-effective, value-added business consultation available anywhere in the world today.”

ISO 9000

ISO 9000 is a series of five international standards published in 1987 by the International

Organization for Standardization (ISO), Geneva, Switzerland. Companies can use the stan-

dards to help determine what is needed to maintain an efficient quality conformance sys-

tem. For example, the standards describe the need for an effective quality system, for

ensuring that measuring and testing equipment is calibrated regularly, and for maintaining

an adequate record-keeping system. ISO 9000 registration determines whether a company

complies with its own quality system. Overall, ISO 9000 registration covers less than 10%

of the Baldrige Award criteria.

Six Sigma

In the late 1980s Motorola recognized the need to improve the quality of its products and ser-

vices; their goal was to achieve a level of quality so good that for every million opportunities

no more than 3.4 defects will occur. This level of quality is referred to as the six sigma level of

quality, and the methodology created to reach this quality goal is referred to as Six Sigma.

An organization may undertake two kinds of Six Sigma projects:

• DMAIC (Define, Measure, Analyze, Improve, and Control) to help redesign exist-

ing processes

• DFSS (Design for Six Sigma) to design new products, processes, or services

In helping to redesign existing processes and design new processes, Six Sigma places a

heavy emphasis on statistical analysis and careful measurement. Today, Six Sigma is a

major tool in helping organizations achieve Baldrige levels of business performance and
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The U.S. Commerce

Department’s National

Institute of Standards 

and Technology (NIST)

manages the Baldrige

National Quality Program.

More information can 

be obtained at the NIST

website.

ISO 9000 standards are

revised periodically to

improve the quality of the

standard.

2004 was the final year for

the Baldrige Stock Study

because of the increase in

the number of recipients

that are either nonprofit or

privately held businesses.
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process quality. Many Baldrige examiners view Six Sigma as the ideal approach for imple-

menting Baldrige improvement programs.

Six Sigma limits and defects per million opportunities In Six Sigma terminology,

a defect is any mistake or error that is passed on to the customer. The Six Sigma process de-

fines quality performance as defects per million opportunities (dpmo). As we indicated pre-

viously, Six Sigma represents a quality level of at most 3.4 dpmo. To illustrate how this

quality level is measured, let us consider the situation at KJW Packaging.

KJW operates a production line where boxes of cereal are filled. The filling process has

a mean of μ � 16.05 ounces and a standard deviation of σ � .10 ounces. In addition, assume

the filling weights are normally distributed. The distribution of filling weights is shown in

Figure 20.1. Suppose management considers 15.45 to 16.65 ounces to be acceptable quality

limits for the filling process. Thus, any box of cereal that contains less than 15.45 or more

than 16.65 ounces is considered to be a defect. Using Excel or Minitab, it can be shown that

99.9999998% of the boxes filled will have between 16.05 � 6(.10) � 15.45 ounces and

16.05 � 6(.10) � 16.65 ounces. In other words, only .0000002% of the boxes filled will

contain less than 15.45 ounces or more than 16.65 ounces. Thus, the likelihood of obtain-

ing a defective box of cereal from the filling process appears to be extremely unlikely,

because on average only two boxes in 10 million will be defective.

Motorola’s early work on Six Sigma convinced them that a process mean can shift on

average by as much as 1.5 standard deviations. For instance, suppose that the process mean

for KJW increases by 1.5 standard deviations or 1.5(.10) � .15 ounces. With such a shift,

the normal distribution of filling weights would now be centered at μ � 16.05 � .15 �

16.20 ounces. With a process mean of μ � 16.05 ounces, the probability of obtaining a box

of cereal with more than 16.65 ounces is extremely small. But how does this probability

change if the mean of the process shifts up to μ � 16.20 ounces? Figure 20.2 shows that for

this case, the upper quality limit of 16.65 is 4.5 standard deviations to the right of the new

mean μ � 16.20 ounces. Using this mean and Excel or Minitab, we find that the probability

of obtaining a box with more than 16.65 ounces is .0000034. Thus, if the process mean shifts

up by 1.5 standard deviations, approximately 1,000,000(.0000034) � 3.4 boxes of cereal

16.0515.45

Lower quality

limit

16.65

Upper quality

limit

σ = .10

Process mean

Defect Defect

µ

FIGURE 20.1 NORMAL DISTRIBUTION OF CEREAL BOX FILLING WEIGHTS 

WITH A PROCESS MEAN μ � 16.05
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will exceed the upper limit of 16.65 ounces. In Six Sigma terminology, the quality level of

the process is said to be 3.4 defects per million opportunities. If management of KJW con-

siders 15.45 to 16.65 ounces to be acceptable quality limits for the filling process, the KJW

filling process would be considered a Six Sigma process. Thus, if the process mean stays

within 1.5 standard deviations of its target value μ � 16.05 ounces, a maximum of only 3.4

defects per million boxes filled can be expected.

Organizations that want to achieve and maintain a Six Sigma level of quality must em-

phasize methods for monitoring and maintaining quality. Quality assurance refers to the en-

tire system of policies, procedures, and guidelines established by an organization to achieve

and maintain quality. Quality assurance consists of two principal functions: quality engi-

neering and quality control. The object of quality engineering is to include quality in the

design of products and processes and to identify quality problems prior to production.

Quality control consists of a series of inspections and measurements used to determine

whether quality standards are being met. If quality standards are not being met, corrective

or preventive action can be taken to achieve and maintain conformance. In the next two sec-

tions we present two statistical methods used in quality control. The first method, statisti-

cal process control, uses graphical displays known as control charts to monitor a process;

the goal is to determine whether the process can be continued or whether corrective action

should be taken to achieve a desired quality level. The second method, acceptance sam-

pling, is used in situations where a decision to accept or reject a group of items must be

based on the quality found in a sample.

20.2 Statistical Process Control

In this section we consider quality control procedures for a production process whereby

goods are manufactured continuously. On the basis of sampling and inspection of produc-

tion output, a decision will be made to either continue the production process or adjust it to

bring the items or goods being produced up to acceptable quality standards.

= 16.20 16.65

Upper quality

limit

σ = .10

Process mean increases

by 1.5 standard deviations

.0000034 or

3.4 dpmo

µ

FIGURE 20.2 NORMAL DISTRIBUTION OF CEREAL BOX FILLING WEIGHTS 

WITH A PROCESS MEAN μ � 16.20
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Despite high standards of quality in manufacturing and production operations, machine

tools will invariably wear out, vibrations will throw machine settings out of adjustment, pur-

chased materials will be defective, and human operators will make mistakes. Any or all of

these factors can result in poor quality output. Fortunately, procedures are available for 

monitoring production output so that poor quality can be detected early and the production

process can be adjusted or corrected.

If the variation in the quality of the production output is due to assignable causes such as

tools wearing out, incorrect machine settings, poor quality raw materials, or operator error, the

process should be adjusted or corrected as soon as possible. Alternatively, if the variation is due

to what are called common causes—that is, randomly occurring variations in materials, tem-

perature, humidity, and so on, which the manufacturer cannot possibly control—the process

does not need to be adjusted. The main objective of statistical process control is to determine

whether variations in output are due to assignable causes or common causes.

Whenever assignable causes are detected, we conclude that the process is out of con-

trol. In that case, corrective action will be taken to bring the process back to an acceptable

level of quality. However, if the variation in the output of a production process is due only

to common causes, we conclude that the process is in statistical control, or simply in con-

trol; in such cases, no changes or adjustments are necessary.

The statistical procedures for process control are based on the hypothesis testing

methodology presented in Chapter 9. The null hypothesis H0 is formulated in terms of the

production process being in control. The alternative hypothesis Ha is formulated in terms of

the production process being out of control. Table 20.1 shows that correct decisions to con-

tinue an in-control process and adjust an out-of-control process are possible. However, as

with other hypothesis testing procedures, both a Type I error (adjusting an in-control process)

and a Type II error (allowing an out-of-control process to continue) are also possible.

Control Charts

A control chart provides a basis for deciding whether the variation in the output is due 

to common causes (in control) or assignable causes (out of control). Whenever an out-of-

control situation is detected, adjustments or other corrective action will be taken to bring

the process back into control.

Control charts can be classified by the type of data they contain. An chart is used if the

quality of the output of the process is measured in terms of a variable such as length, weight,

temperature, and so on. In that case, the decision to continue or to adjust the production pro-

cess will be based on the mean value found in a sample of the output. To introduce some of 

the concepts common to all control charts, let us consider some specific features of an chart.

Figure 20.3 shows the general structure of an chart. The center line of the chart corre-

sponds to the mean of the process when the process is in control. The vertical line identifies

x̄

x̄

x̄Control charts based on

data that can be measured

on a continuous scale are

called variables control

charts. The chart is a

variables control chart.

x̄

State of Production Process

H0 True H0 False
Process in Control Process Out of Control

Continue Process Correct decision Type II error

(allowing an out-of-control 

process to continue)Decision

Adjust Process Type I error Correct decision

(adjusting an in-control process)

TABLE 20.1 THE OUTCOMES OF STATISTICAL PROCESS CONTROL

Process control procedures

are closely related to

hypothesis testing

procedures discussed

earlier in this text. Control

charts provide an ongoing

test of the hypothesis that

the process is in control.

Continuous improvement is

one of the most important

concepts of the total quality

management movement.

The most important use 

of a control chart is in

improving the process.
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the scale of measurement for the variable of interest. Each time a sample is taken from the

production process, a value of the sample mean is computed and a data point showing the

value of is plotted on the control chart.

The two lines labeled UCL and LCL are important in determining whether the process

is in control or out of control. The lines are called the upper control limit and the lower con-

trol limit, respectively. They are chosen so that when the process is in control, there will be

a high probability that the value of will be between the two control limits. Values outside

the control limits provide strong statistical evidence that the process is out of control and

corrective action should be taken.

Over time, more and more data points will be added to the control chart. The order of

the data points will be from left to right as the process is sampled. In essence, every time a

point is plotted on the control chart, we are carrying out a hypothesis test to determine

whether the process is in control.

In addition to the chart, other control charts can be used to monitor the range of the

measurements in the sample (R chart), the proportion defective in the sample ( p chart), and

the number of defective items in the sample (np chart). In each case, the control chart has

a LCL, a center line, and an UCL similar to the chart in Figure 20.3. The major difference

among the charts is what the vertical axis measures; for instance, in a p chart the measure-

ment scale denotes the proportion of defective items in the sample instead of the sample

mean. In the following discussion, we will illustrate the construction and use of the chart,

R chart, p chart, and np chart.

x
_

Chart: Process Mean and Standard Deviation Known

To illustrate the construction of an chart, let us reconsider the situation at KJW Packaging.

Recall that KJW operates a production line where cartons of cereal are filled. When the process

is operating correctly—and hence the system is in control—the mean filling weight is

μ � 16.05 ounces, and the process standard deviation is σ � .10 ounces. In addition, the fill-

ing weights are assumed to be normally distributed. This distribution is shown in Figure 20.4.

The sampling distribution of , as presented in Chapter 7, can be used to determine the vari-

ation that can be expected in values for a process that is in control. Let us first briefly review

the properties of the sampling distribution of . First, recall that the expected value or mean of

is equal to μ, the mean filling weight when the production line is in control. For samples of

size n, the equation for the standard deviation of , called the standard error of the mean, is

(20.1)σx̄ �
σ

�n

x̄

x̄

x̄

x̄

x̄

x̄

x̄

x̄

x̄

x̄

x̄

x̄

UCL

Process Mean

When in Control

LCL

Center line

S
a
m

p
le

 M
ea

n

Time

FIGURE 20.3 CHART STRUCTUREx̄
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In addition, because the filling weights are normally distributed, the sampling distribution of

is normally distributed for any sample size. Thus, the sampling distribution of is a normal

distribution with mean μ and standard deviation . This distribution is shown in Figure 20.5.

The sampling distribution of is used to determine what values of are reasonable if the

process is in control. The general practice in quality control is to define as reasonable any

value of that is within 3 standard deviations, or standard errors, above or below the mean

value. Recall from the study of the normal probability distribution that approximately 99.7%

of the values of a normally distributed random variable are within �3 standard deviations of

its mean value. Thus, if a value of is within the interval μ � 3 to μ � 3 , we will assume

that the process is in control. In summary, then, the control limits for an chart are as follows.x̄

σx̄σx̄x̄

x̄

x̄x̄

σx̄

x̄x̄

16.05

σ = .10

Process mean µ

FIGURE 20.4 NORMAL DISTRIBUTION OF CEREAL CARTON FILLING WEIGHTS

σ x =
σ

n

x
µ

E(x)

FIGURE 20.5 SAMPLING DISTRIBUTION OF FOR A SAMPLE OF n FILLING WEIGHTSx̄
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Reconsider the KJW Packaging example with the process distribution of filling weights

shown in Figure 20.4 and the sampling distribution of shown in Figure 20.5. Assume that

a quality control inspector periodically samples six cartons and uses the sample mean fill-

ing weight to determine whether the process is in control or out of control. Using equation

(20.1), we find that the standard error of the mean is Thus,σx̄ � σ��n � .10��6 � .04.

x̄

UCL � 16.17

Process Mean

LCL � 15.93

Process out of control

16.00

15.95

15.90

16.05

16.10

16.15

16.20

1 2 3 4 5 6 7 8 9 10

Sample Number

S
a
m

p
le

 M
ea

n
 x

FIGURE 20.6 THE CHART FOR THE CEREAL CARTON FILLING PROCESSx̄

CONTROL LIMITS FOR AN CHART: PROCESS MEAN AND STANDARD

DEVIATION KNOWN

(20.2)

(20.3)

UCL �

LCL �

μ � 3σx̄

μ � 3σx̄

x̄

with the process mean at 16.05, the control limits are UCL � 16.05 � 3(.04) � 16.17 and

LCL � 16.05 � 3(.04) � 15.93. Figure 20.6 is the control chart with the results of 10 sam-

ples taken over a 10-hour period. For ease of reading, the sample numbers 1 through 10 are

listed below the chart.

Note that the mean for the fifth sample in Figure 20.6 shows there is strong evidence

that the process is out of control. The fifth sample mean is below the LCL, indicating that

assignable causes of output variation are present and that underfilling is occurring. As a 

result, corrective action was taken at this point to bring the process back into control. The

fact that the remaining points on the chart are within the upper and lower control limits

indicates that the corrective action was successful.

x
_

Chart: Process Mean and Standard Deviation Unknown

In the KJW Packaging example, we showed how an chart can be developed when the

mean and standard deviation of the process are known. In most situations, the process mean

and standard deviation must be estimated by using samples that are selected from the

process when it is in control. For instance, KJW might select a random sample of five boxes

each morning and five boxes each afternoon for 10 days of in-control operation. For each

x̄

x̄
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Sample Sample
Sample Mean Range
Number Observations Rj

1 3.5056 3.5086 3.5144 3.5009 3.5030 3.5065 .0135

2 3.4882 3.5085 3.4884 3.5250 3.5031 3.5026 .0368

3 3.4897 3.4898 3.4995 3.5130 3.4969 3.4978 .0233

4 3.5153 3.5120 3.4989 3.4900 3.4837 3.5000 .0316

5 3.5059 3.5113 3.5011 3.4773 3.4801 3.4951 .0340

6 3.4977 3.4961 3.5050 3.5014 3.5060 3.5012 .0099

7 3.4910 3.4913 3.4976 3.4831 3.5044 3.4935 .0213

8 3.4991 3.4853 3.4830 3.5083 3.5094 3.4970 .0264

9 3.5099 3.5162 3.5228 3.4958 3.5004 3.5090 .0270

10 3.4880 3.5015 3.5094 3.5102 3.5146 3.5047 .0266

11 3.4881 3.4887 3.5141 3.5175 3.4863 3.4989 .0312

12 3.5043 3.4867 3.4946 3.5018 3.4784 3.4932 .0259

13 3.5043 3.4769 3.4944 3.5014 3.4904 3.4935 .0274

14 3.5004 3.5030 3.5082 3.5045 3.5234 3.5079 .0230

15 3.4846 3.4938 3.5065 3.5089 3.5011 3.4990 .0243

16 3.5145 3.4832 3.5188 3.4935 3.4989 3.5018 .0356

17 3.5004 3.5042 3.4954 3.5020 3.4889 3.4982 .0153

18 3.4959 3.4823 3.4964 3.5082 3.4871 3.4940 .0259

19 3.4878 3.4864 3.4960 3.5070 3.4984 3.4951 .0206

20 3.4969 3.5144 3.5053 3.4985 3.4885 3.5007 .0259

x̄j

TABLE 20.2 DATA FOR THE JENSEN COMPUTER SUPPLIES PROBLEM

OVERALL SAMPLE MEAN

(20.4)

where

x̄j �

k �

mean of the jth sample j � 1, 2, . . . , k

number of samples

x̄̄ �
x̄1 � x̄

 2 � . . . � x̄k

k

subgroup, or sample, the mean and standard deviation of the sample are computed. The

overall averages of both the sample means and the sample standard deviations are used to

construct control charts for both the process mean and the process standard deviation.

In practice, it is more common to monitor the variability of the process by using the

range instead of the standard deviation because the range is easier to compute. The range

can be used to provide good estimates of the process standard deviation; thus it can be used

to construct upper and lower control limits for the chart with little computational effort.

To illustrate, let us consider the problem facing Jensen Computer Supplies, Inc.

Jensen Computer Supplies (JCS) manufactures 3.5-inch-diameter computer disks; they

just finished adjusting their production process so that it is operating in control. Suppose

random samples of five disks were selected during the first hour of operation, five disks were

selected during the second hour of operation, and so on, until 20 samples were obtained.

Table 20.2 provides the diameter of each disk sampled as well as the mean j and range Rj

for each of the samples.

The estimate of the process mean μ is given by the overall sample mean.

x̄

x̄

It is important to maintain

control over both the mean

and the variability of a

process.

fileWEB

Jensen
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The overall sample mean 

is used to estimate μ and

the sample ranges are used

to develop an estimate of σ.

x̄̄

For the JCS data in Table 20.2, the overall sample mean is � 3.4995. This value will be the

center line for the chart. The range of each sample, denoted Rj, is simply the difference

between the largest and smallest values in each sample. The average range for k samples is

computed as follows.

x̄

x̄̄

AVERAGE RANGE

(20.5)

where

Rj �

k �

range of the jth sample, j � 1, 2, . . . , k

number of samples

R̄ �
R1 � R

 2 � . . . � Rk

k

For the JCS data in Table 20.2, the average range is � .0253.

In the preceding section we showed that the upper and lower control limits for the 

chart are

(20.6)

Hence, to construct the control limits for the chart, we need to estimate μ and σ, the mean

and standard deviation of the process. An estimate of μ is given by . An estimate of σ can

be developed by using the range data.

It can be shown that an estimator of the process standard deviation σ is the average

range divided by d2, a constant that depends on the sample size n. That is,

(20.7)

The American Society for Testing and Materials Manual on Presentation of Data and Con-

trol Chart Analysis provides values for d2 as shown in Table 20.3. For instance, when n � 5,

d2 � 2.326, and the estimate of σ is the average range divided by 2.326. If we substitute 

/d2 for σ in expression (20.6), we can write the control limits for the chart asx̄R̄

Estimator of σ �
R̄

d2

x̄̄

x̄

x̄ � 3 
σ

�n

x̄

R̄

(20.8)

Note that A2 � 3/(d2 ) is a constant that depends only on the sample size. Values for A2

are provided in Table 20.3. For n � 5, A2 � .577; thus, the control limits for the chart arex̄

�n 

x̄̄ � 3 
R̄�d

 2

�n
� x̄̄ �

3

d
 2 

�n
 R̄ � x̄̄ � A2R̄

Hence, UCL � 3.514 and LCL � 3.485.

3.4995 � (.577)(.0253) � 3.4995 � .0146
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Observations
in Sample, n d2 A2 d3 D3 D4

2 1.128 1.880 0.853 0 3.267

3 1.693 1.023 0.888 0 2.574

4 2.059 0.729 0.880 0 2.282

5 2.326 0.577 0.864 0 2.114

6 2.534 0.483 0.848 0 2.004

7 2.704 0.419 0.833 0.076 1.924

8 2.847 0.373 0.820 0.136 1.864

9 2.970 0.337 0.808 0.184 1.816

10 3.078 0.308 0.797 0.223 1.777

11 3.173 0.285 0.787 0.256 1.744

12 3.258 0.266 0.778 0.283 1.717

13 3.336 0.249 0.770 0.307 1.693

14 3.407 0.235 0.763 0.328 1.672

15 3.472 0.223 0.756 0.347 1.653

16 3.532 0.212 0.750 0.363 1.637

17 3.588 0.203 0.744 0.378 1.622

18 3.640 0.194 0.739 0.391 1.608

19 3.689 0.187 0.734 0.403 1.597

20 3.735 0.180 0.729 0.415 1.585

21 3.778 0.173 0.724 0.425 1.575

22 3.819 0.167 0.720 0.434 1.566

23 3.858 0.162 0.716 0.443 1.557

24 3.895 0.157 0.712 0.451 1.548

25 3.931 0.153 0.708 0.459 1.541

Source: Adapted from Table 27 of ASTM STP 15D, ASTM Manual on Presentation of Data and Control Chart Analysis.

Copyright 1976 American Society for Testing and Materials, Philadelphia, PA. Reprinted with permission.

TABLE 20.3 FACTORS FOR AND R CONTROL CHARTSx̄

Figure 20.7 shows the chart for the Jensen Computer Supplies problem. We used the

data in Table 20.2 and Minitab’s control chart routine to construct the chart. The center line

is shown at the overall sample mean � 3.4995. The upper control limit (UCL) is 3.514 and

the lower control (LCL) is 3.485. The chart shows the 20 sample means plotted over time.

Because all 20 sample means are within the control limits,we confirm that the process mean

was in control during the sampling period.

R Chart

Let us now consider a range chart (R chart) that can be used to control the variability of a

process. To develop the R chart, we need to think of the range of a sample as a random vari-

able with its own mean and standard deviation. The average range provides an estimate

of the mean of this random variable. Moreover, it can be shown that an estimate of the stan-

dard deviation of the range is

(20.9)σ̂R � d3 
R̄

d
 2

R̄

x̄

x̄̄

x̄
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where d2 and d3 are constants that depend on the sample size; values of d2 and d3 are pro-

vided in Table 20.3. Thus, the UCL for the R chart is given by

(20.10)

and the LCL is

(20.11)

If we let

we can write the control limits for the R chart as

(20.14)

(20.15)

Values for D3 and D4 are also provided in Table 20.3. Note that for n � 5, D3 � 0 and

D4 � 2.114. Thus, with � .0253, the control limits are

Figure 20.8 shows the R chart for the Jensen Computer Supplies problem. We used the data

in Table 20.2 and Minitab’s control chart routine to construct the chart. The center line is

UCL �

LCL �

.0253(2.114) � .053

.0253(0) � 0

R̄

LCL � R̄
 
D3

UCL � R̄
 
D4

(20.12)

 

(20.13)

D4 � 1 � 3 
d3

d
 2

D3 � 1 � 3 
d3

d
 2

R̄ � 3σ̂R � R̄�1 � 3 
d3

d2
�

R̄ � 3σ̂R � R̄�1 � 3 
d3

d2
�

If the R chart indicates that

the process is out of control,

the chart should not be

interpreted until the R chart

indicates the process

variability is in control.

x̄

3.485

3.495

3.505

3.515

LCL = 3.485

5 10 15

Sample Number

20

UCL = 3.514

S
a
m

p
le

 M
ea

n

x = 3.4995

FIGURE 20.7 CHART FOR THE JENSEN COMPUTER SUPPLIES PROBLEMx̄
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FIGURE 20.8 R CHART FOR THE JENSEN COMPUTER SUPPLIES PROBLEM

shown at the overall mean of the 20 sample ranges, � .0253. The UCL is .053 and the

LCL is .000. The R chart shows the 20 sample ranges plotted over time. Because all 20 sam-

ple ranges are within the control limits, we confirm that the process variability was in control

during the sampling period.

p Chart

Let us consider the case in which the output quality is measured by either nondefective 

or defective items. The decision to continue or to adjust the production process will be 

based on , the proportion of defective items found in a sample. The control chart used for

proportion-defective data is called a p chart.

To illustrate the construction of a p chart, consider the use of automated mail-sorting

machines in a post office. These automated machines scan the zip codes on letters and di-

vert each letter to its proper carrier route. Even when a machine is operating properly, some

letters are diverted to incorrect routes. Assume that when a machine is operating correctly,

or in a state of control, 3% of the letters are incorrectly diverted. Thus p, the proportion of

letters incorrectly diverted when the process is in control, is .03.

The sampling distribution of , as presented in Chapter 7, can be used to determine the

variation that can be expected in values for a process that is in control. Recall that the ex-

pected value or mean of is p, the proportion defective when the process is in control. With

samples of size n, the formula for the standard deviation of , called the standard error of

the proportion, is

(20.16)

We also learned in Chapter 7 that the sampling distribution of can be approximated by a

normal distribution whenever the sample size is large. With , the sample size can be con-

sidered large whenever the following two conditions are satisfied.

np � 5

n(1 � p) � 5

p̄

p̄

σp̄ � �p(1 � p)

n

p̄

p̄

p̄

p̄

p̄

R̄

Control charts that are

based on data indicating

the presence of a defect or

a number of defects are

called attributes control

charts. A p chart is an

attributes control chart.
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σ p =

p

E(p)

p

p(1 – p)

n

FIGURE 20.9 SAMPLING DISTRIBUTION OF p̄

In summary, whenever the sample size is large, the sampling distribution of can be ap-

proximated by a normal distribution with mean p and standard deviation . This distribu-

tion is shown in Figure 20.9.

To establish control limits for a p chart, we follow the same procedure we used to es-

tablish control limits for an chart. That is, the limits for the control chart are set at 3 stan-

dard deviations, or standard errors, above and below the proportion defective when the

process is in control. Thus, we have the following control limits.

x̄

σp̄

p̄

CONTROL LIMITS FOR A p CHART

(20.17)

(20.18)

UCL � p � 3σp̄

LCL � p � 3σp̄

With p � .03 and samples of size n � 200, equation (20.16) shows that the standard error is

Hence, the control limits are UCL � .03 � 3(.0121) � .0663, and LCL � .03 � 3(.0121) �

�.0063. Whenever equation (20.18) provides a negative value for LCL, LCL is set equal to

zero in the control chart.

Figure 20.10 is the control chart for the mail-sorting process. The points plotted show

the sample proportion defective found in samples of letters taken from the process. All points

are within the control limits, providing no evidence to conclude that the sorting process is

out of control. 

If the proportion of defective items for a process that is in control is not known, that

value is first estimated by using sample data. Suppose, for example, that k different samples,

each of size n, are selected from a process that is in control. The fraction or proportion of

defective items in each sample is then determined. Treating all the data collected as one large

σp̄ � �.03(1 � .03)

200
� .0121
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sample, we can compute the proportion of defective items for all the data; that value can

then be used to estimate p, the proportion of defective items observed when the process is

in control. Note that this estimate of p also enables us to estimate the standard error of the

proportion; upper and lower control limits can then be established.

np Chart

An np chart is a control chart developed for the number of defective items in a sample. In

this case, n is the sample size and p is the probability of observing a defective item when the

process is in control. Whenever the sample size is large, that is, when np � 5 and

n(1 � p) � 5, the distribution of the number of defective items observed in a sample of size

n can be approximated by a normal distribution with mean np and standard deviation

Thus, for the mail-sorting example, with n � 200 and p � .03, the number of de-

fective items observed in a sample of 200 letters can be approximated by a normal distribu-

tion with a mean of 200(.03) � 6 and a standard deviation of

The control limits for an np chart are set at 3 standard deviations above and below the

expected number of defective items observed when the process is in control. Thus, we have

the following control limits.

�200(.03)(.97) � 2.4125.

�np(1 � p).

For the mail-sorting process example, with p � .03 and n � 200, the control limits are

UCL � 6 � 3(2.4125) � 13.2375 and LCL � 6 � 3(2.4125) � �1.2375. When LCL is

negative, LCL is set equal to zero in the control chart. Hence, if the number of letters di-

verted to incorrect routes is greater than 13, the process is concluded to be out of control.

The information provided by an np chart is equivalent to the information provided by the

p chart; the only difference is that the np chart is a plot of the number of defective items 

CONTROL LIMITS FOR AN np CHART

(20.19)

(20.20)

UCL � np � 3 �np(1 � p)

LCL � np � 3 �np(1 � p)
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FIGURE 20.10 p CHARTFOR THE PROPORTION DEFECTIVE IN AMAIL-SORTING PROCESS
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observed, whereas the p chart is a plot of the proportion of defective items observed. Thus, if

we were to conclude that a particular process is out of control on the basis of a p chart, the

process would also be concluded to be out of control on the basis of an np chart.

Interpretation of Control Charts

The location and pattern of points in a control chart enable us to determine, with a small

probability of error, whether a process is in statistical control. A primary indication that a

process may be out of control is a data point outside the control limits, such as point 5 in

Figure 20.6. Finding such a point is statistical evidence that the process is out of control; in

such cases, corrective action should be taken as soon as possible.

In addition to points outside the control limits, certain patterns of the points within the

control limits can be warning signals of quality control problems. For example, assume that

all the data points are within the control limits but that a large number of points are on one

side of the center line. This pattern may indicate that an equipment problem, a change in ma-

terials, or some other assignable cause of a shift in quality has occurred. Careful investigation

of the production process should be undertaken to determine whether quality has changed.

Another pattern to watch for in control charts is a gradual shift, or trend, over time. For

example, as tools wear out, the dimensions of machined parts will gradually deviate from

their designed levels. Gradual changes in temperature or humidity, general equipment

deterioration, dirt buildup, or operator fatigue may also result in a trend pattern in con-

trol charts. Six or seven points in a row that indicate either an increasing or decreasing 

trend should be cause for concern, even if the data points are all within the control limits.

When such a pattern occurs, the process should be reviewed for possible changes or shifts

in quality. Corrective action to bring the process back into control may be necessary.

Even if all points are within

the upper and lower control

limits, a process may not be

in control. Trends in the

sample data points or

unusually long runs above

or below the center line

may also indicate out-of-

control conditions.

NOTES AND COMMENTS

1. Because the control limits for the chart depend

on the value of the average range, these limits

will not have much meaning unless the process

variability is in control. In practice, the R chart

is usually constructed before the chart; if the 

R chart indicates that the process variability is 

in control, then the chart is constructed. Mini-

tab’s Xbar-R option provides the chart and thex̄

x̄

x̄

x̄ R chart simultaneously. The steps of this proce-

dure are described in Appendix 20.1.

2. An np chart is used to monitor a process in terms

of the number of defects. The Motorola Six

Sigma Quality Level sets a goal of producing no

more than 3.4 defects per million operations;

this goal implies p � .0000034.

Exercises

Methods

1. A process that is in control has a mean of μ � 12.5 and a standard deviation of σ � .8.

a. Construct the x
_

control chart for this process if samples of size 4 are to be used.

b. Repeat part (a) for samples of size 8 and 16.

c. What happens to the limits of the control chart as the sample size is increased? Dis-

cuss why this is reasonable.

2. Twenty-five samples, each of size 5, were selected from a process that was in control. The

sum of all the data collected was 677.5 pounds.

a. What is an estimate of the process mean (in terms of pounds per unit) when the process

is in control?

b. Develop the x
_ 

control chart for this process if samples of size 5 will be used. Assume

that the process standard deviation is .5 when the process is in control, and that the

mean of the process is the estimate developed in part (a).
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3. Twenty-five samples of 100 items each were inspected when a process was considered

to be operating satisfactorily. In the 25 samples, a total of 135 items were found to be

defective.

a. What is an estimate of the proportion defective when the process is in control?

b. What is the standard error of the proportion if samples of size 100 will be used for

statistical process control?

c. Compute the upper and lower control limits for the control chart.

4. A process sampled 20 times with a sample of size 8 resulted in � 28.5 and � 1.6. 

Compute the upper and lower control limits for the and R charts for this process.

Applications

5. Temperature is used to measure the output of a production process. When the process is in

control, the mean of the process is μ � 128.5 and the standard deviation is σ � .4.

a. Construct the chart for this process if samples of size 6 are to be used.

b. Is the process in control for a sample providing the following data?

128.8 128.2 129.1 128.7 128.4 129.2

c. Is the process in control for a sample providing the following data?

129.3 128.7 128.6 129.2 129.5 129.0

6. A quality control process monitors the weight per carton of laundry detergent. Control lim-

its are set at UCL � 20.12 ounces and LCL � 19.90 ounces. Samples of size 5 are used

for the sampling and inspection process. What are the process mean and process standard

deviation for the manufacturing operation?

7. The Goodman Tire and Rubber Company periodically tests its tires for tread wear under

simulated road conditions. To study and control the manufacturing process, 20 samples,

each containing three radial tires, were chosen from different shifts over several days of op-

eration, with the following results. Assuming that these data were collected when the man-

ufacturing process was believed to be operating in control, develop the R and charts.x̄

x̄

x̄

R̄x̄̄

Sample Tread Wear*

1 31 42 28
2 26 18 35
3 25 30 34
4 17 25 21
5 38 29 35
6 41 42 36
7 21 17 29
8 32 26 28
9 41 34 33

10 29 17 30
11 26 31 40
12 23 19 25
13 17 24 32
14 43 35 17
15 18 25 29
16 30 42 31
17 28 36 32
18 40 29 31
19 18 29 28
20 22 34 26

*Hundredths of an inch

testSELF

fileWEB

Tires
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8. Over several weeks of normal, or in-control, operation, 20 samples of 150 packages each

of synthetic-gut tennis strings were tested for breaking strength. A total of 141 packages 

of the 3000 tested failed to conform to the manufacturer’s specifications.

a. What is an estimate of the process proportion defective when the system is in control?

b. Compute the upper and lower control limits for a p chart.

c. With the results of part (b), what conclusion should be made about the process if tests

on a new sample of 150 packages find 12 defective? Do there appear to be assignable

causes in this situation?

d. Compute the upper and lower control limits for an np chart.

e. Answer part (c) using the results of part (d).

f. Which control chart would be preferred in this situation? Explain.

9. An automotive industry supplier produces pistons for several models of automobiles. Twenty

samples, each consisting of 200 pistons, were selected when the process was known to be

operating correctly. The numbers of defective pistons found in the samples follow.

8 10 6 4 5 7 8 12 8 15

14 10 10 7 5 8 6 10 4 8

a. What is an estimate of the proportion defective for the piston manufacturing process

when it is in control?

b. Construct the p chart for the manufacturing process, assuming each sample has 200

pistons.

c. With the results of part (b), what conclusion should be made if a sample of 200 has 

20 defective pistons?

d. Compute the upper and lower control limits for an np chart.

e. Answer part (c) using the results of part (d).

20.3 Acceptance Sampling

In acceptance sampling, the items of interest can be incoming shipments of raw materials

or purchased parts as well as finished goods from final assembly. Suppose we want to decide

whether to accept or reject a group of items on the basis of specified quality characteristics.

In quality control terminology, the group of items is a lot, and acceptance sampling is a

statistical method that enables us to base the accept-reject decision on the inspection of a

sample of items from the lot.

The general steps of acceptance sampling are shown in Figure 20.11. After a lot is

received, a sample of items is selected for inspection. The results of the inspection are com-

pared to specified quality characteristics. If the quality characteristics are satisfied, the lot

is accepted and sent to production or shipped to customers. If the lot is rejected, managers

must decide on its disposition. In some cases, the decision may be to keep the lot and re-

move the unacceptable or nonconforming items. In other cases, the lot may be returned to

the supplier at the supplier’s expense; the extra work and cost placed on the supplier can

motivate the supplier to provide high-quality lots. Finally, if the rejected lot consists of fin-

ished goods, the goods must be scrapped or reworked to meet acceptable quality standards.

The statistical procedure of acceptance sampling is based on the hypothesis testing method-

ology presented in Chapter 9. The null and alternative hypotheses are stated as follows.

Table 20.4 shows the results of the hypothesis testing procedure. Note that correct deci-

sions correspond to accepting a good-quality lot and rejecting a poor-quality lot. However,

H0:

Ha:
 
Good-quality lot

Poor-quality lot

Acceptance sampling has

the following advantages

over 100% inspection:

1. Usually less expensive

2. Less product damage 

due to less handling 

and testing

3. Fewer inspectors

required

4. The only approach

possible if destructive

testing must be used
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Results compared with

specified quality

characteristics

Sample

inspected for quality

Sample selected

Lot received

Send to production

or customer

Accept the lot

Decide on disposition

of the lot

Reject the lot

Quality is

satisfactory

Quality is

not satisfactory

FIGURE 20.11 ACCEPTANCE SAMPLING PROCEDURE

as with other hypothesis testing procedures, we need to be aware of the possibilities of

making a Type I error (rejecting a good-quality lot) or a Type II error (accepting a poor-

quality lot).

The probability of a Type I error creates a risk for the producer of the lot and is known

as the producer’s risk. For example, a producer’s risk of .05 indicates a 5% chance that a

good-quality lot will be erroneously rejected. The probability of a Type II error, on the other

hand, creates a risk for the consumer of the lot and is known as the consumer’s risk. For

example, a consumer’s risk of .10 means a 10% chance that a poor-quality lot will be erro-

neously accepted and thus used in production or shipped to the customer. Specific values

State of the Lot

H0 True H0 False
Good-Quality Lot Poor-Quality Lot

Accept the Lot Correct decision Type II error

(accepting a poor-quality lot)
Decision

Reject the Lot Type I error Correct decision

(rejecting a good-quality lot)

TABLE 20.4 THE OUTCOMES OF ACCEPTANCE SAMPLING
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for the producer’s risk and the consumer’s risk can be controlled by the person designing

the acceptance sampling procedure. To illustrate how to assign risk values, let us consider

the problem faced by KALI, Inc.

KALI, Inc.: An Example of Acceptance Sampling

KALI, Inc., manufactures home appliances that are marketed under a variety of trade

names. However, KALI does not manufacture every component used in its products. Sev-

eral components are purchased directly from suppliers. For example, one of the compo-

nents that KALI purchases for use in home air conditioners is an overload protector, a

device that turns off the compressor if it overheats. The compressor can be seriously dam-

aged if the overload protector does not function properly, and therefore KALI is concerned

about the quality of the overload protectors. One way to ensure quality would be to test

every component received through an approach known as 100% inspection. However, to

determine proper functioning of an overload protector, the device must be subjected to

time-consuming and expensive tests, and KALI cannot justify testing every overload pro-

tector it receives.

Instead, KALI uses an acceptance sampling plan to monitor the quality of the overload

protectors. The acceptance sampling plan requires that KALI’s quality control inspectors

select and test a sample of overload protectors from each shipment. If very few defective

units are found in the sample, the lot is probably of good quality and should be accepted.

However, if a large number of defective units are found in the sample, the lot is probably of

poor quality and should be rejected.

An acceptance sampling plan consists of a sample size n and an acceptance criterion c.

The acceptance criterion is the maximum number of defective items that can be found 

in the sample and still indicate an acceptable lot. For example, for the KALI problem let 

us assume that a sample of 15 items will be selected from each incoming shipment or lot.

Furthermore, assume that the manager of quality control states that the lot can be accepted

only if no defective items are found. In this case, the acceptance sampling plan established

by the quality control manager is n � 15 and c � 0.

This acceptance sampling plan is easy for the quality control inspector to implement.

The inspector simply selects a sample of 15 items, performs the tests, and reaches a con-

clusion based on the following decision rule.

• Accept the lot if zero defective items are found.

• Reject the lot if one or more defective items are found.

Before implementing this acceptance sampling plan, the quality control manager wants to

evaluate the risks or errors possible under the plan. The plan will be implemented only if

both the producer’s risk (Type I error) and the consumer’s risk (Type II error) are controlled

at reasonable levels.

Computing the Probability of Accepting a Lot

The key to analyzing both the producer’s risk and the consumer’s risk is a “what-if” type

of analysis. That is, we will assume that a lot has some known percentage of defective items

and compute the probability of accepting the lot for a given sampling plan. By varying the

assumed percentage of defective items, we can examine the effect of the sampling plan on

both types of risks.

Let us begin by assuming that a large shipment of overload protectors has been received

and that 5% of the overload protectors in the shipment are defective. For a shipment or lot

with 5% of the items defective, what is the probability that the n � 15, c � 0 sampling plan

will lead us to accept the lot? Because each overload protector tested will be either defective

or nondefective and because the lot size is large, the number of defective items in a sample
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of 15 has a binomial distribution. The binomial probability function, which was presented

in Chapter 5, follows.

BINOMIAL PROBABILITY FUNCTION FOR ACCEPTANCE SAMPLING

(20.21)

where

n �

p �

x �

f (x) �

the sample size

the proportion of defective items in the lot

the number of defective items in the sample

the probability of x defective items in the sample

f (x) �
n!

x!(n � x)!
 px(1 � p)(n�x)

For the KALI acceptance sampling plan, n � 15; thus, for a lot with 5% defective

( p � .05), we have

(20.22)

Using equation (20.22), f (0) will provide the probability that zero overload protectors will

be defective and the lot will be accepted. In using equation (20.22), recall that 0! � 1. Thus,

the probability computation for f (0) is

We now know that the n � 15, c � 0 sampling plan has a .4633 probability of accepting a

lot with 5% defective items. Hence, there must be a corresponding 1 � .4633 � .5367 prob-

ability of rejecting a lot with 5% defective items.

Tables of binomial probabilities (see Table 5, Appendix B) can help reduce the compu-

tational effort in determining the probabilities of accepting lots. Selected binomial proba-

bilities for n � 15 and n � 20 are listed in Table 20.5. Using this table, we can determine

that if the lot contains 10% defective items, there is a .2059 probability that the n � 15,

c � 0 sampling plan will indicate an acceptable lot. The probability that the n � 15, c � 0

sampling plan will lead to the acceptance of lots with 1%, 2%, 3%, . . . defective items is

summarized in Table 20.6.

Using the probabilities in Table 20.6, a graph of the probability of accepting the lot ver-

sus the percent defective in the lot can be drawn as shown in Figure 20.12. This graph, or

curve, is called the operating characteristic (OC) curve for the n � 15, c � 0 acceptance

sampling plan.

Perhaps we should consider other sampling plans, ones with different sample sizes n or

different acceptance criteria c. First consider the case in which the sample size remains

n � 15 but the acceptance criterion increases from c � 0 to c � 1. That is, we will now

accept the lot if zero or one defective component is found in the sample. For a lot with 5%

defective items ( p � .05), Table 20.5 shows that with n � 15 and p � .05, f (0) � .4633 and

f (1) � .3658. Thus, there is a .4633 � .3658 � .8291 probability that the n � 15, c � 1

plan will lead to the acceptance of a lot with 5% defective items.

�
15!

0!(15)!
 (.05)0(.95)15

� (.95)15
� .4633

f (0) �
15!

0!(15 � 0)!
 (.05)0(1 � .05)(15�0)

f (x) �
15!

x!(15 � x)!
 (.05)x(1 � .05)(15�x)

Binomial probabilities can

also be computed using

Excel or Minitab.
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Continuing these calculations we obtain Figure 20.13, which shows the operating char-

acteristic curves for four alternative acceptance sampling plans for the KALI problem.

Samples of size 15 and 20 are considered. Note that regardless of the proportion defective

in the lot, the n � 15, c � 1 sampling plan provides the highest probabilities of accepting

the lot. The n � 20, c � 0 sampling plan provides the lowest probabilities of accepting the

lot; however, that plan also provides the highest probabilities of rejecting the lot.

Percent Defective in the Lot Probability of Accepting the Lot

1 .8601

2 .7386

3 .6333

4 .5421

5 .4633

10 .2059

15 .0874

20 .0352

25 .0134

TABLE 20.6 PROBABILITY OF ACCEPTING THE LOT FOR THE KALI PROBLEM WITH

n � 15 AND c � 0

p

n x .01 .02 .03 .04 .05 .10 .15 .20 .25

15 0 .8601 .7386 .6333 .5421 .4633 .2059 .0874 .0352 .0134

1 .1303 .2261 .2938 .3388 .3658 .3432 .2312 .1319 .0668

2 .0092 .0323 .0636 .0988 .1348 .2669 .2856 .2309 .1559

3 .0004 .0029 .0085 .0178 .0307 .1285 .2184 .2501 .2252

4 .0000 .0002 .0008 .0022 .0049 .0428 .1156 .1876 .2252

5 .0000 .0000 .0001 .0002 .0006 .0105 .0449 .1032 .1651

6 .0000 .0000 .0000 .0000 .0000 .0019 .0132 .0430 .0917

7 .0000 .0000 .0000 .0000 .0000 .0003 .0030 .0138 .0393

8 .0000 .0000 .0000 .0000 .0000 .0000 .0005 .0035 .0131

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0007 .0034

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0007

20 0 .8179 .6676 .5438 .4420 .3585 .1216 .0388 .0115 .0032

1 .1652 .2725 .3364 .3683 .3774 .2702 .1368 .0576 .0211

2 .0159 .0528 .0988 .1458 .1887 .2852 .2293 .1369 .0669

3 .0010 .0065 .0183 .0364 .0596 .1901 .2428 .2054 .1339

4 .0000 .0006 .0024 .0065 .0133 .0898 .1821 .2182 .1897

5 .0000 .0000 .0002 .0009 .0022 .0319 .1028 .1746 .2023

6 .0000 .0000 .0000 .0001 .0003 .0089 .0454 .1091 .1686

7 .0000 .0000 .0000 .0000 .0000 .0020 .0160 .0545 .1124

8 .0000 .0000 .0000 .0000 .0000 .0004 .0046 .0222 .0609

9 .0000 .0000 .0000 .0000 .0000 .0001 .0011 .0074 .0271

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0020 .0099

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0005 .0030

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0008

TABLE 20.5 SELECTED BINOMIAL PROBABILITIES FOR SAMPLES OF SIZE 15 AND 20
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FIGURE 20.12 OPERATING CHARACTERISTIC CURVE FOR THE n � 15, c � 0
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α(1 – )

β

α
α  = Producer’s risk (the

probability of making

a Type I error)

β  = Consumer’s risk (the

probability of making

a Type II error)

p0 p1

FIGURE 20.14 OPERATING CHARACTERISTIC CURVE FOR n � 15, c � 0 WITH p0 � .03

AND p1 � .15

Selecting an Acceptance Sampling Plan

Now that we know how to use the binomial distribution to compute the probability of ac-

cepting a lot with a given proportion defective, we are ready to select the values of n and c

that determine the desired acceptance sampling plan for the application being studied. To

develop this plan, managers must specify two values for the fraction defective in the lot.

One value, denoted p0, will be used to control for the producer’s risk, and the other value,

denoted p1, will be used to control for the consumer’s risk.

We will use the following notation.

Suppose that for the KALI problem, the managers specify that p0 � .03 and p1 � .15. From the

OC curve for n � 15, c � 0 in Figure 20.14, we see that p0 � .03 provides a producer’s risk of

approximately 1 � .63 � .37, and p1 � .15 provides a consumer’s risk of approximately .09.

Thus, if the managers are willing to tolerate both a .37 probability of rejecting a lot with 3%

defective items (producer’s risk) and a .09 probability of accepting a lot with 15% defective

items (consumer’s risk), the n � 15, c � 0 acceptance sampling plan would be acceptable.

Suppose, however, that the managers request a producer’s risk of α � .10 and a con-

sumer’s risk of � � .20. We see that now the n � 15, c � 0 sampling plan has a better-

than-desired consumer’s risk but an unacceptably large producer’s risk. The fact that

α � .37 indicates that 37% of the lots will be erroneously rejected when only 3% of the

items in them are defective. The producer’s risk is too high, and a different acceptance sam-

pling plan should be considered.

α �

� �

the producer’s risk; the probability of rejecting a lot with p0 defective items

the consumer’s risk; the probability of accepting a lot with p1 defective items
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Using p0 � .03, α � .10, p1 � .15, and � � .20, Figure 20.13 shows that the acceptance

sampling plan with n � 20 and c � 1 comes closest to meeting both the producer’s and the

consumer’s risk requirements.

As shown in this section, several computations and several operating characteristic

curves may need to be considered to determine the sampling plan with the desired pro-

ducer’s and consumer’s risk. Fortunately, tables of sampling plans are published. For ex-

ample, the American Military Standard Table, MIL-STD-105D, provides information

helpful in designing acceptance sampling plans. More advanced texts on quality control,

such as those listed in the bibliography, describe the use of such tables. The advanced texts

also discuss the role of sampling costs in determining the optimal sampling plan.

Sample n1

items

Find x1

defective items

in this sample

Is

x1 ≤ c1

?

Accept

the lot

Is

x1 ≥ c2

?

Reject

the lot

Sample n2

additional items

Find x2

defective items

in this sample

Is

x1 + x2 ≤ c3

?

Yes

Yes

YesNo

No

No

FIGURE 20.15 A TWO-STAGE ACCEPTANCE SAMPLING PLAN

Exercise 13 at the end of

this section will ask you to

compute the producer’s risk

and the consumer’s risk for

the n � 20, c � 1 sampling

plan.
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Multiple Sampling Plans

The acceptance sampling procedure we presented for the KALI problem is a single-sample

plan. It is called a single-sample plan because only one sample or sampling stage is

used. After the number of defective components in the sample is determined, a decision

must be made to accept or reject the lot. An alternative to the single-sample plan is a

multiple sampling plan, in which two or more stages of sampling are used. At each stage

a decision is made among three possibilities: stop sampling and accept the lot, stop sam-

pling and reject the lot, or continue sampling. Although more complex, multiple sampling

plans often result in a smaller total sample size than single-sample plans with the same α

and � probabilities.

The logic of a two-stage, or double-sample, plan is shown in Figure 20.15. Initially a

sample of n1 items is selected. If the number of defective components x1 is less than or equal

to c1, accept the lot. If x1 is greater than or equal to c2, reject the lot. If x1 is between c1 and

c2 (c1 � x1 � c2), select a second sample of n2 items. Determine the combined, or total,

number of defective components from the first sample (x1) and the second sample (x2). If

x1 � x2 � c3, accept the lot; otherwise reject the lot. The development of the double-sample

plan is more difficult because the sample sizes n1 and n2 and the acceptance numbers c1, c2,

and c3 must meet both the producer’s and consumer’s risks desired.

NOTES AND COMMENTS

1. The use of the binomial distribution for accep-

tance sampling is based on the assumption of

large lots. If the lot size is small, the hyper-

geometric distribution is appropriate. Experts in

the field of quality control indicate that the Pois-

son distribution provides a good approximation

for acceptance sampling when the sample size 

is at least 16, the lot size is at least 10 times 

the sample size, and p is less than .1. For larger

sample sizes, the normal approximation to the

binomial distribution can be used.

2. In the MIL-ST-105D sampling tables, p0 is

called the acceptable quality level (AQL). In

some sampling tables, p1 is called the lot toler-

ance percent defective (LTPD) or the rejectable

quality level (RQL). Many of the published sam-

pling plans also use quality indexes such as the

indifference quality level (IQL) and the average

outgoing quality limit (AOQL). The more ad-

vanced texts listed in the bibliography provide a

complete discussion of these other indexes.

3. In this section we provided an introduction to at-

tributes sampling plans. In these plans each item

sampled is classified as nondefective or defec-

tive. In variables sampling plans, a sample is

taken and a measurement of the quality charac-

teristic is taken. For example, for gold jewelry a

measurement of quality may be the amount of

gold it contains. A simple statistic such as the av-

erage amount of gold in the sample jewelry is

computed and compared with an allowable value

to determine whether to accept or reject the lot.

Exercises

Methods

10. For an acceptance sampling plan with n � 25 and c � 0, find the probability of accepting

a lot that has a defect rate of 2%. What is the probability of accepting the lot if the defect

rate is 6%?

11. Consider an acceptance sampling plan with n � 20 and c � 0. Compute the producer’s

risk for each of the following cases.

a. The lot has a defect rate of 2%.

b. The lot has a defect rate of 6%.

12. Repeat exercise 11 for the acceptance sampling plan with n � 20 and c � 1. What hap-

pens to the producer’s risk as the acceptance number c is increased? Explain.

testSELF
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Applications

13. Refer to the KALI problem presented in this section. The quality control manager requested

a producer’s risk of .10 when p0 was .03 and a consumer’s risk of .20 when p1 was .15.

Consider the acceptance sampling plan based on a sample size of 20 and an acceptance

number of 1. Answer the following questions.

a. What is the producer’s risk for the n � 20, c � 1 sampling plan?

b. What is the consumer’s risk for the n � 20, c � 1 sampling plan?

c. Does the n � 20, c � 1 sampling plan satisfy the risks requested by the quality con-

trol manager? Discuss.

14. To inspect incoming shipments of raw materials, a manufacturer is considering samples of

sizes 10, 15, and 20. Use the binomial probabilities from Table 5 of Appendix B to select

a sampling plan that provides a producer’s risk of α � .03 when p0 is .05 and a consumer’s

risk of � � .12 when p1 is .30.

15. A domestic manufacturer of watches purchases quartz crystals from a Swiss firm. The

crystals are shipped in lots of 1000. The acceptance sampling procedure uses 20 randomly

selected crystals.

a. Construct operating characteristic curves for acceptance numbers of 0, 1, and 2.

b. If p0 is .01 and p1 � .08, what are the producer’s and consumer’s risks for each sam-

pling plan in part (a)?

Summary

In this chapter we discussed how statistical methods can be used to assist in the control of

quality. We first presented the , R, p, and np control charts as graphical aids in monitoring

process quality. Control limits are established for each chart; samples are selected periodi-

cally, and the data points plotted on the control chart. Data points outside the control limits

indicate that the process is out of control and that corrective action should be taken. Pat-

terns of data points within the control limits can also indicate potential quality control prob-

lems and suggest that corrective action may be warranted.

We also considered the technique known as acceptance sampling. With this procedure,

a sample is selected and inspected. The number of defective items in the sample provides

the basis for accepting or rejecting the lot. The sample size and the acceptance criterion

can be adjusted to control both the producer’s risk (Type I error) and the consumer’s risk

(Type II error).

Glossary

Total quality (TQ) A total system approach to improving customer satisfaction and low-

ering real cost through a strategy of continuous improvement and learning.

Six Sigma A methodology that uses measurement and statistical analysis to achieve a level

of quality so good that for every million opportunities no more than 3.4 defects will occur.

Quality control A series of inspections and measurements that determine whether quality

standards are being met.

Assignable causes Variations in process outputs that are due to factors such as machine

tools wearing out, incorrect machine settings, poor-quality raw materials, operator error,

and so on. Corrective action should be taken when assignable causes of output variation are

detected.

Common causes Normal or natural variations in process outputs that are due purely to

chance. No corrective action is necessary when output variations are due to common causes.

Control chart A graphical tool used to help determine whether a process is in control or

out of control.

x̄
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chart A control chart used when the quality of the output of a process is measured in terms

of the mean value of a variable such as a length, weight, temperature, and so on.

R chart A control chart used when the quality of the output of a process is measured in 

terms of the range of a variable.

p chart A control chart used when the quality of the output of a process is measured in terms

of the proportion defective.

np chart A control chart used to monitor the quality of the output of a process in terms of

the number of defective items.

Lot A group of items such as incoming shipments of raw materials or purchased parts as

well as finished goods from final assembly.

Acceptance sampling A statistical method in which the number of defective items found

in a sample is used to determine whether a lot should be accepted or rejected.

Producer’s risk The risk of rejecting a good-quality lot; a Type I error.

Consumer’s risk The risk of accepting a poor-quality lot; a Type II error.

Acceptance criterion The maximum number of defective items that can be found in the

sample and still indicate an acceptable lot.

Operating characteristic (OC) curve A graph showing the probability of accepting the lot

as a function of the percentage defective in the lot. This curve can be used to help determine

whether a particular acceptance sampling plan meets both the producer’s and the con-

sumer’s risk requirements.

Multiple sampling plan A form of acceptance sampling in which more than one sample or

stage is used. On the basis of the number of defective items found in a sample, a decision

will be made to accept the lot, reject the lot, or continue sampling.

Key Formulas

Standard Error of the Mean

(20.1)

Control Limits for an Chart: Process Mean and Standard Deviation Known

Overall Sample Mean

(20.4)

Average Range

(20.5)

Control Limits for an Chart: Process Mean and Standard Deviation Unknown

(20.8)

Control Limits for an R Chart

(20.14)

(20.15)LCL � R̄
 
D3

UCL � R̄
 
D4

x̄̄ � A2R̄

x̄

R̄ �
R1 � R

 2 � . . . � Rk

k

x̄̄ �
x̄1 � x̄

 2 � . . . � x̄k

k

(20.2)

(20.3)

UCL �

LCL �

μ � 3σx̄

μ � 3σx̄

x̄

σx̄ �
σ

�n

x̄
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Standard Error of the Proportion

(20.16)

Control Limits for a p Chart

Control Limits for an np Chart

Binomial Probability Function for Acceptance Sampling

(20.21)

Supplementary Exercises

16. Samples of size 5 provided the following 20 sample means for a production process that is

believed to be in control.

95.72 95.24 95.18

95.44 95.46 95.32

95.40 95.44 95.08

95.50 95.80 95.22

95.56 95.22 95.04

95.72 94.82 95.46

95.60 95.78

a. Based on these data, what is an estimate of the mean when the process is in control?

b. Assume that the process standard deviation is σ � .50. Develop the x
_

control chart for

this production process. Assume that the mean of the process is the estimate developed

in part (a).

c. Do any of the 20 sample means indicate that the process was out of control?

17. Product filling weights are normally distributed with a mean of 350 grams and a standard

deviation of 15 grams.

a. Develop the control limits for the x
_

chart for samples of size 10, 20, and 30.

b. What happens to the control limits as the sample size is increased?

c. What happens when a Type I error is made?

d. What happens when a Type II error is made?

e. What is the probability of a Type I error for samples of size 10, 20, and 30?

f. What is the advantage of increasing the sample size for control chart purposes? What

error probability is reduced as the sample size is increased?

18. Twenty-five samples of size 5 resulted in � 5.42 and � 2.0. Compute control limits

for the and R charts, and estimate the standard deviation of the process.

19. The following are quality control data for a manufacturing process at Kensport Chemical

Company. The data show the temperature in degrees centigrade at five points in time dur-

ing a manufacturing cycle. The company is interested in using control charts to monitor

the temperature of its manufacturing process. Construct the chart and R chart. What con-

clusions can be made about the quality of the process?

x̄

x̄

R̄x̄̄

f (x) �
n!

x!(n � x)!
 px(1 � p)(n�x)

(20.19)

(20.20)

UCL � np � 3 �np(1 � p)

LCL � np � 3 �np(1 � p)

(20.17)

(20.18)

UCL � p � 3σp̄

LCL � p � 3σp̄

σp̄ � �p(1 � p)

n
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21. Consider the following situations. Comment on whether the situation might cause concern

about the quality of the process.

a. A p chart has LCL � 0 and UCL � .068. When the process is in control, the propor-

tion defective is .033. Plot the following seven sample results: .035, .062, .055, .049,

.058, .066, and .055. Discuss.

b. An chart has LCL � 22.2 and UCL � 24.5. The mean is μ � 23.35 when the

process is in control. Plot the following seven sample results: 22.4, 22.6, 22.65, 23.2,

23.4, 23.85, and 24.1. Discuss.

22. Managers of 1200 different retail outlets make twice-a-month restocking orders from a

central warehouse. Past experience shows that 4% of the orders result in one or more er-

rors such as wrong item shipped, wrong quantity shipped, and item requested but not

shipped. Random samples of 200 orders are selected monthly and checked for accuracy.

a. Construct a control chart for this situation.

b. Six months of data show the following numbers of orders with one or more errors: 10,

15, 6, 13, 8, and 17. Plot the data on the control chart. What does your plot indicate

about the order process?

23. An n � 10, c � 2 acceptance sampling plan is being considered; assume that p0 � .05

and p1 � .20.

a. Compute both producer’s and consumer’s risk for this acceptance sampling plan.

b. Would the producer, the consumer, or both be unhappy with the proposed sam-

pling plan?

c. What change in the sampling plan, if any, would you recommend?

x̄

20. The following were collected for the Master Blend Coffee production process. The data

show the filling weights based on samples of 3-pound cans of coffee. Use these data to

construct the and R charts. What conclusions can be made about the quality of the pro-

duction process?

x̄

Observations

Sample 1 2 3 4 5

1 3.05 3.08 3.07 3.11 3.11
2 3.13 3.07 3.05 3.10 3.10
3 3.06 3.04 3.12 3.11 3.10
4 3.09 3.08 3.09 3.09 3.07
5 3.10 3.06 3.06 3.07 3.08
6 3.08 3.10 3.13 3.03 3.06
7 3.06 3.06 3.08 3.10 3.08
8 3.11 3.08 3.07 3.07 3.07
9 3.09 3.09 3.08 3.07 3.09

10 3.06 3.11 3.07 3.09 3.07

Sample R Sample R

1 95.72 1.0 11 95.80 .6
2 95.24 .9 12 95.22 .2
3 95.18 .8 13 95.56 1.3
4 95.44 .4 14 95.22 .5
5 95.46 .5 15 95.04 .8
6 95.32 1.1 16 95.72 1.1
7 95.40 .9 17 94.82 .6
8 95.44 .3 18 95.46 .5
9 95.08 .2 19 95.60 .4

10 95.50 .6 20 95.74 .6

x̄x̄

fileWEB

Coffee
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24. An acceptance sampling plan with n � 15 and c � 1 has been designed with a producer’s

risk of .075.

a. Was the value of p0 .01, .02, .03, .04, or .05? What does this value mean?

b. What is the consumer’s risk associated with this plan if p1 is .25?

25. A manufacturer produces lots of a canned food product. Let p denote the proportion of the

lots that do not meet the product quality specifications. An n � 25, c � 0 acceptance sam-

pling plan will be used.

a. Compute points on the operating characteristic curve when p � .01, .03, .10, and .20.

b. Plot the operating characteristic curve.

c. What is the probability that the acceptance sampling plan will reject a lot containing

.01 defective?

Appendix 20.1 Control Charts with Minitab

In this appendix we describe the steps required to generate Minitab control charts using the

Jensen Computer Supplies data shown in Table 20.2. The sample number appears in column

C1. The first observation is in column C2, the second observation is in column C3, and so on.

The following steps describe how to use Minitab to produce both the chart and R chart

simultaneously.

Step 1. Select the Stat menu

Step 2. Choose Control Charts

Step 3. Choose Variables Charts for Subgroups

Step 4. Choose Xbar-R

Step 5. When the Xbar-R Chart dialog box appears:

Select Observations for a subgroup are in one row of columns

In the box below, enter C2-C6

Select Xbar-R Options

Step 6. When the Xbar-R-Options dialog box appears:

Select the Tests tab

Select Perform selected tests for special causes

Choose 1 point > K standard deviations from center line*

Enter 3 in the K box

Click OK

Step 7. When the Xbar-R Chart dialog box appears:

Click OK

The chart and the R chart will be shown together on the Minitab output. The choices

available under step 3 of the preceding Minitab procedure provide access to a variety of con-

trol chart options. For example, the and the R chart can be selected separately. Additional

options include the p chart, the np chart, and others.

Appendix 20.2 Control Charts Using StatTools

In this appendix we show how StatTools can be used to construct an chart and an R chart

for the Jensen Computer Supplies data shown in Table 20.2. Figure 20.16 is an Excel work-

sheet containing the Jensen data. Begin by using the Data Set Manager to create a StatTools

x̄

x̄

x̄

x̄

*Minitab provides several additional tests for detecting special causes of variation and out-of-control conditions. The user
may select several of these tests simultaneously.
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data set for these data using the procedure described in the appendix in Chapter 1. The fol-

lowing steps describe how StatTools can be used to provide both control charts.

Step 1. Click the StatTools tab on the Ribbon

Step 2. In the Analyses group, click Quality Control

Step 3. Choose the X/R Charts option

Step 4. When the StatTools-Xbar and R Control Charts dialog box appears:

Select X-Bar/R Chart in the Chart Type box

In the Variables section, select Observation 1, Observation 2,

Observation 3, Observation 4, and Observation 5

Click OK

An chart similar to the one in Figure 20.7 will appear. It will be followed by an R chart

similar to the one in Figure 20.8.

x̄
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FIGURE 20.16 EXCEL DATA WORKSHEET FOR JENSEN COMPUTER SUPPLIES

A B C D E F G

1 Sample Observation 1 Observation 2 Observation 3 Observation 4 Observation 5

2 1 3.5056 3.5086 3.5144 3.5009 3.5030

3 2 3.4882 3.5085 3.4884 3.5250 3.5031

4 3 3.4897 3.4898 3.4995 3.5130 3.4969

5 4 3.5153 3.5120 3.4989 3.4900 3.4837

6 5 3.5059 3.5113 3.5011 3.4773 3.4801

7 6 3.4977 3.4961 3.5050 3.5014 3.5060

8 7 3.4910 3.4913 3.4976 3.4831 3.5044

9 8 3.4991 3.4853 3.4830 3.5083 3.5094

10 9 3.5099 3.5162 3.5228 3.4958 3.5004

11 10 3.4880 3.5015 3.5094 3.5102 3.5146

12 11 3.4881 3.4887 3.5141 3.5175 3.4863

13 12 3.5043 3.4867 3.4946 3.5018 3.4784

14 13 3.5043 3.4769 3.4944 3.5014 3.4904

15 14 3.5004 3.5030 3.5082 3.5045 3.5234

16 15 3.4846 3.4938 3.5065 3.5089 3.5011

17 16 3.5145 3.4832 3.5188 3.4935 3.4989

18 17 3.5004 3.5042 3.4954 3.5020 3.4889

19 18 3.4959 3.4823 3.4964 3.5082 3.4871

20 19 3.4878 3.4864 3.4960 3.5070 3.4984

21 20 3.4969 3.5144 3.5053 3.4985 3.4885
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